Show simple item record

dc.contributor.advisorRosmaini, Elly
dc.contributor.authorSari, Maimanah Kartika
dc.date.accessioned2025-01-23T04:29:46Z
dc.date.available2025-01-23T04:29:46Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/100546
dc.description.abstractGeneralized Linear Models (GLM) are used to model data when the distribution of the response variable is part of the exponential family. The negative binomial distribution and the Poisson distribution are examples of exponential distributions. While the link function explicitly explais the relationship between the regression model and the expected value of the response variable, the GLM model explains the structure of the predictor variables. The aim of this study is to identify predictor variables that significantly influence the optimal model. The incidence of tuberculosis in North Sumatra will be modeled using Poisson and negative binomial regression. Based on the results of the analysis, it was found that two predictor variables significantly influenced the incidence of tuberculosis in North Sumatra, namely the number of poor people and the percentage of people aged 45-54 years who smoke, with AIC value =483,91. where the model chosen is negative binomial regression with the model equation π=exp(4,861+0,000021x1+0,025610x3).en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAICen_US
dc.subjectGLMen_US
dc.subjectnegative binomial distributionen_US
dc.subjectpoisson distributionen_US
dc.titlePemodelan Regresi dengan Pendekatan Generalized Linear Models pada Kasus Tuberkulosis di Sumatera Utaraen_US
dc.title.alternativeRegression Modeling Using Generalized Linear Models Approach to Tuberculosis Cases in North of Sumateraen_US
dc.typeThesisen_US
dc.identifier.nimNIM170803110
dc.identifier.nidnNIDN0020056004
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages55 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record