Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorSitohang, Dion Orlando
dc.date.accessioned2025-01-24T04:26:40Z
dc.date.available2025-01-24T04:26:40Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/100600
dc.description.abstractParameter estimation of Cox Proportional Hazard (CoxPH) regression models often faces challenges on large datasets. In this study, the Newton-Raphson method is compared with the Stochastic Gradient Descent (SGD) method to evaluate parameter estimation. Log-partial likelihood was utilized to estimate the model parameters, and evaluated using Concordance Index (C-Index) value as the main metric. Results show that SGD is superior in all tested dataset sizes. On a dataset of 10,000 samples, SGD achieved a C-Index of 0.683, while Newton-Raphson was only 0.674. Moreover, on datasets of 50,000 and 100,000, the C-Index values for SGD were 0.679 and 0.684, respectively, while Newton-Raphson experienced a decline in performance with C-Indexes of 0.511 and 0.551. This study demonstrates the effectiveness of SGD in capturing data complexity, making it a better choice for CoxPH parameter estimation on large data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCox Proportional Hazarden_US
dc.subjectLog-Partial Likelihooden_US
dc.subjectNewton-Raphsonen_US
dc.subjectStochastic Gradient Descenten_US
dc.subjectConcordance Indexen_US
dc.titlePenaksiran Parameter Cox Proportional Hazard Regression pada Data Besar Menggunakan Stochastic Gradient Descenten_US
dc.title.alternativeParameter Estimation of Cox Proportional Hazard Regression on Large Data Using Stochastic Gradient Descenten_US
dc.typeThesisen_US
dc.identifier.nimNIM200803067
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages62 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record