Show simple item record

dc.contributor.advisorDarnius, Open
dc.contributor.authorRahmawati, Puput
dc.date.accessioned2025-01-30T08:37:42Z
dc.date.available2025-01-30T08:37:42Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/100692
dc.description.abstractMaximum Likelihood is a commonly used statistical method to estimate the parameters of probabilistic models. Ant Colony Optimization is a heuristic method that performs search in optimization using a system of approximations. This study uses Maximum Likelihood and Ant Colony Optimization to estimate and test the parameters of the Weibull distribution. The distribution used to estimate the parameters is the two-parameter Weibull distribution. Maximum Likelihood has the ability to produce efficient and consistent estimates in many cases. This method forms a likelihood function, which is the product of the probability density functions for each data point. Then, this likelihood function is converted to log-likelihood for ease of calculation. Furthermore, the parameter value that maximizes this log-likelihood is considered as the estimator. Ant Colony Optimization (ACO) is influenced by parameter values so that it can produce solutions that are close to optimal or even optimal. Testing is done with several trials so as to produce the best parameter values. When run, the path formation of each ant in the Ant Colony Optimization (ACO) algorithm is designed based on its probability value, where the system will recommend a different path when the results are not optimal or close to optimal. Based on the estimators obtained from data simulations using Python programming, it is found that the estimation of the Weibull distribution parameters using Maximum Likelihood is well used in the Weibull distribution based on the Fitness value.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAnt Colony Optimizationen_US
dc.subjectWeibull Distributionen_US
dc.subjectMaximum Likelihooden_US
dc.subjectParametersen_US
dc.subjectEstimationen_US
dc.titlePenaksiran Parameter Distribusi Weibull Menggunakan Maksimum Likelihood dan Ant Colony Optimizationen_US
dc.title.alternativeEstimation of Weibull Distribution Parameter Using Maximum Likelihood and Ant Colony Optimizationen_US
dc.typeThesisen_US
dc.identifier.nimNIM200803049
dc.identifier.nidnNIDN0014106403
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages50 pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 13. Climate Actionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record