Show simple item record

dc.contributor.advisorSitorus, Syahriol
dc.contributor.authorSimamora, Dea Melinda
dc.date.accessioned2025-02-20T03:12:15Z
dc.date.available2025-02-20T03:12:15Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/101484
dc.description.abstractIn this study, the ARIMA-GARCH model is used to forecast stock prices and volatility, while the Hidden Markov Model (HMM) is used to detect hidden trends based on the forecasting results. The data used is the historical daily stock price data of PT Bukit Asam Tbk from October 2022 to October 2023. From the ARIMAGARCH model, the best models for forecasting the opening and closing stock prices of PT Bukit Asam Tbk are ARIMA(0,1,1)-GARCH(1,0) and ARIMA(1,1,0)- GARCH(1,0) with equations and . These forecasting results will be used to identify and forecast hidden trends in stock price movements. Based on the results of the Hidden Markov Model (HMM) analysis, all hidden states show bearish conditions indicating that the overall market is in a downward trend, despite daily fluctuations in stock prices.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectARIMAen_US
dc.subjectForecastingen_US
dc.subjectGARCHen_US
dc.subjectHidden Markov Modelen_US
dc.subjectTrend Marketen_US
dc.subjectStock Priceen_US
dc.titlePeramalan Harga dan Tren Saham Menggunakan Model Arima-Garch dan Hidden Markov Modelen_US
dc.title.alternativeForecasting Stock Price and Tren Using Arima-Garch Model and Hidden Markov Modelen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803080
dc.identifier.nidnNIDN0010037104
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages107 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 8. Decent Work And Economic Growthen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record