Show simple item record

dc.contributor.advisorZahedi
dc.contributor.authorAziz, Isnaini Hafizhah
dc.date.accessioned2025-03-18T02:14:16Z
dc.date.available2025-03-18T02:14:16Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/102201
dc.description.abstractIn various types of statistical analysis, the Weibull distribution is an important continuous probability distribution. One crucial aspect of studying this distribution is estimating its parameters. The maximum likelihood method is the approach used for the two-parameter Weibull distribution. This method aims to determine the parameter values by maximizing the likelihood function based on the available data. The advantages of the maximum likelihood method lie in its properties, such as consistency, efficiency, and asymptotic normality. Since the form of the likelihood function in the Weibull distribution is quite complex and cannot be solved analytically, numerical solutions are required. One approach used is the Newton-Raphson method, which serves to approximate the parameter values or find the optimal solution.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectWeibull Distributionen_US
dc.subjectMaximum Likelihood Methoden_US
dc.subjectParameter Estimationen_US
dc.titleEstimasi Parameter Distribusi Weibull Menggunakan Metode Maksimum Likelihooden_US
dc.title.alternativeParameters Estimation of Weibull Distribution Using Maximum Likelihood Methoden_US
dc.typeThesisen_US
dc.identifier.nimNIM190803018
dc.identifier.nidnNIDN0016096101
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages36 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record