Show simple item record

dc.contributor.advisorPane, Rahmawati
dc.contributor.authorKhairunnisa, Nurul
dc.date.accessioned2025-03-18T02:18:15Z
dc.date.available2025-03-18T02:18:15Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/102202
dc.description.abstractThe Weibull distribution is widely used in reliability analysis and failure modeling due to its flexibility in modeling various types of data. For accurate parameter estimation, the Penalized Maximum Likelihood Estimation (PMLE) method with the Gradient Descent (GD) algorithm is applied to address overfitting and optimize the parameters of this distribution. This study implements PMLE on the Weibull distribution to achieve stabel parameter estimation, utilizing numerical methods like Gradient Descent (GD) since the resulting likelihood function often lacks a direct analytical solution. PMLE introduces a penalty to the likelihood function to control model complexity and prevent overfitting. Based on simulations conducted using Python, it was found that the estimation of the two-parameter Weibull distribution using PMLE with the GD algorithm is effective for this distribution. This is evidenced by the small bias values obtained. PMLE excels in producing stabel and consistent estimates, resulting in estimators that closely approximate the true parameter values. Therefore, PMLE is a more reliable method for estimating the parameters of the Weibull distribution, particularly for data with limited sample sizes.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectGradient Descent Algorithmen_US
dc.subjectPenalized Maximum Likelihood Estimationen_US
dc.subjectWeibull Distributionen_US
dc.titleAplikasi Penalized Maximum Likelihood Estimation pada Distribusi Weibull dengan Algoritma Gradient Descenten_US
dc.title.alternativeApplication of Penalized Maximum Likelihood Estimation on Weibull Distribution Using Gradient Descent Algorithmen_US
dc.typeThesisen_US
dc.identifier.nimNIM190803030
dc.identifier.nidnNIDN0019025604
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages45 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record