• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimisasi Metode Klasifikasi KNN, SVM, dan SVM Kernel pada Prediksi Potabilitas Air dengan Pendekatan Hyperparameter

    Optimization of KNN, SVM, and SVM Kernel in Water Potability Prediction with Hyperparameter Approach

    Thumbnail
    View/Open
    Cover (1.634Mb)
    Fulltext (6.935Mb)
    Date
    2025
    Author
    Siburian, Roy Hendro
    Advisor(s)
    Mahyuddin
    Tarigan, Jos Timanta
    Metadata
    Show full item record
    Abstract
    his research focuses on optimizing the K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and SVM Kernel classification methods using a hyperparameter approach to improve the accuracy of water potability prediction. The water potability dataset containing 3276 water samples with 10 features is used. The research methods include exploratory data analysis (EDA), data preprocessing (handling missing values, standardization, dimensionality reduction, and feature selection), modeling (KNN, SVM, SVM Kernel), hyperparameter optimization using GridSearchCV, and model evaluation (accuracy, precision, recall, F1-score, ROC AUC). The results show that the SVM model with an optimized RBF kernel has the best performance, but the overall model accuracy is still not optimal. Further research is suggested to address class imbalance, select more relevant features, engineer features, and use ensemble techniques. With further development, it is expected that a more accurate and reliable model for predicting water potability can be produced, thereby contributing to improving public health and well-being.
    URI
    https://repositori.usu.ac.id/handle/123456789/102439
    Collections
    • Master Theses [623]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV