Show simple item record

dc.contributor.advisorMahyuddin
dc.contributor.advisorTarigan, Jos Timanta
dc.contributor.authorSiburian, Roy Hendro
dc.date.accessioned2025-03-24T04:11:23Z
dc.date.available2025-03-24T04:11:23Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/102439
dc.description.abstracthis research focuses on optimizing the K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and SVM Kernel classification methods using a hyperparameter approach to improve the accuracy of water potability prediction. The water potability dataset containing 3276 water samples with 10 features is used. The research methods include exploratory data analysis (EDA), data preprocessing (handling missing values, standardization, dimensionality reduction, and feature selection), modeling (KNN, SVM, SVM Kernel), hyperparameter optimization using GridSearchCV, and model evaluation (accuracy, precision, recall, F1-score, ROC AUC). The results show that the SVM model with an optimized RBF kernel has the best performance, but the overall model accuracy is still not optimal. Further research is suggested to address class imbalance, select more relevant features, engineer features, and use ensemble techniques. With further development, it is expected that a more accurate and reliable model for predicting water potability can be produced, thereby contributing to improving public health and well-being.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectWater Potabilityen_US
dc.subjectClassificationen_US
dc.subjectK-Nearest Neighboren_US
dc.subjectSupport Vector Machineen_US
dc.subjectHyperparameter Optimizationen_US
dc.titleOptimisasi Metode Klasifikasi KNN, SVM, dan SVM Kernel pada Prediksi Potabilitas Air dengan Pendekatan Hyperparameteren_US
dc.title.alternativeOptimization of KNN, SVM, and SVM Kernel in Water Potability Prediction with Hyperparameter Approachen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038030
dc.identifier.nidnNIDN0025126703
dc.identifier.nidnNIDN0126018502
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages90 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record