Show simple item record

dc.contributor.advisorWidia Sembiring, Rahmat
dc.contributor.advisorZamzami, Elviawaty Muisa
dc.contributor.authorGinting, Aser Heber
dc.date.accessioned2025-04-16T03:14:42Z
dc.date.available2025-04-16T03:14:42Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/103098
dc.description.abstractThis study highlights the importance of addressing class imbalance in credit score model datasets to achieve accurate risk prediction, especially in identifying rare default cases The SMOTETomek technique is proven to be effective in addressing class imbalance, significantly improving the performance of Random Forest and XGBoost models, especially in terms of recall (the ability to identify positive cases) Both models, after being optimized with SMOTETomek and Grid Search, showed excellent classification performance with accuracy above 93%, high precision, and significant recall improvement ROC analysis shows that XGBoost has slightly superior discriminatory ability compared to Random Forest in distinguishing between positive and negative classesen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCredit Score Modelen_US
dc.subjectRandom Foresten_US
dc.subjectXGBoosten_US
dc.titleOptimasi Model Credit Scoring dengan Random Forest dan XGBoosten_US
dc.title.alternativeOptimization of Credit Scoring Model with Random Forest and XGBoosten_US
dc.typeThesisen_US
dc.identifier.nimNIM217038035
dc.identifier.nidnNIDN0023056503
dc.identifier.nidnNIDN0016077001
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages78 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record