Show simple item record

dc.contributor.advisorHayatunnufus
dc.contributor.advisorBudiman, Mohammad Andri
dc.contributor.authorBarus, Tessa Agitha Irwani Br
dc.date.accessioned2025-04-16T04:03:42Z
dc.date.available2025-04-16T04:03:42Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/103135
dc.description.abstractAdvancements in communication technology, such as video calls, have facilitated long-distance interactions. However, individuals with hearing disabilities still face communication barriers due to the limited understanding of Indonesian Sign Language (BISINDO) among public. This study proposes a real-time BISINDO detection system in the ElCue video call application by optimizing MobileNetV2 through fine-tuning techniques and the incorporation of additional layers. The research methodology involves collecting BISINDO dataset consisting of 9 gesture classes, preprocessing through augmentation, edge detection, and normalization, followed by model training utilizing transfer learning and fine-tuning, wherein several final layers of MobileNetV2 are unfrozen to refine the model’s weights. Additionally, the model architecture is extended with Global Average Pooling, Dense Layers, and Dropout to enhance classification accuracy and stability. The model’s performance is evaluated based on accuracy and real-time inference capabilities using a camera. The results indicate that the optimized model achieved 97.1% accuracy on the test dataset and 88.9% in real-time testing, proving that the optimized MobileNetV2 can serve as an effective solution for real-time BISINDO detection.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMobileNetV2en_US
dc.subjectBISINDOen_US
dc.subjectFine-tuningen_US
dc.subjectDeep Learningen_US
dc.subjectReal-time Detectionen_US
dc.titleOptimasi MobileNetV2 dengan Fine-tuning dan Additional Layers untuk Pendeteksian Bahasa Isyarat Indonesia (BISINDO) secara Real-time dalam Aplikasi Video Call ElCueen_US
dc.title.alternativeOptimization of MobileNetV2 through Fine-tuning and Additional Layers for Real-time Detection of Indonesian Sign Language (BISINDO) in The ElCue Video Call Applicationen_US
dc.typeThesisen_US
dc.identifier.nimNIM211401138
dc.identifier.nidnNIDN0019079202
dc.identifier.nidnNIDN0008107507
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages75 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 10. Reduce Inequalitiesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record