Show simple item record

dc.contributor.advisorHayatunnufus, Hayatunnufus
dc.contributor.advisorManik, Fuzy Yustika
dc.contributor.authorAstuti, Rani Widya
dc.date.accessioned2025-04-16T04:11:20Z
dc.date.available2025-04-16T04:11:20Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/103141
dc.description.abstractAdvancements in communication technology, such as video calls, have significantly improved social interactions. However, they remain inaccessible to individuals with hearing impairments. Indonesian Sign Language (BISINDO), the primary communication method for the Deaf community, presents challenges for automated recognition, particularly due to variations in hand gestures, differences in viewing angles, and inconsistent lighting conditions. One approach to addressing these challenges is by implementing pre-processing techniques to enhance data diversity and improve model robustness in gesture recognition during video calls. This research applies pre-processing techniques using Geometric Augmentation (rotation, translation, scaling, shearing, and flipping) and Edge Detection with Gaussian Blur, Adaptive Thresholding, and Otsu’s Thresholding to increase dataset variation while simultaneously enhancing the clarity of hand contours and boundaries. The results show an expansion of the dataset to 380,800 images, preserving the fundamental structure of hand gestures. A Convolutional Neural Network (CNN) model trained on the pre-processed dataset achieved a validation accuracy of 83.77% and a test accuracy of 83.88%, confirming that the applied pre-processing methods significantly enhance classification accuracy. Consequently, the integration of Edge Detection and Geometric Augmentation in BISINDO pre-processing plays a crucial role in improving model performance and holds strong potential for implementation in real-time sign language recognition systems within the ElCue video call application.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPre-processingen_US
dc.subjectGeometric Augmentationen_US
dc.subjectEdge Detectionen_US
dc.subjectBISINDOen_US
dc.subjectReal-timeen_US
dc.titlePenerapan Teknik Augmentasi Geometrik dan Edge Detection pada Pre-Processing Dataset Bahasa Isyarat Indonesia (BISINDO) untuk Mengatasi Variasi Gerakan Real-Time dalam Aplikasi ElCueen_US
dc.title.alternativeImplementation Of Geometric Augmentation and Edge Detection in Pre-Processing Indonesian Sign Language (BISINDO) Dataset to Handle Real-Time Movement Variations in the ElCue Applicationen_US
dc.typeThesisen_US
dc.identifier.nimNIM211401018
dc.identifier.nidnNIDN0019079202
dc.identifier.nidnNIDN0115108703
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages75 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 10. Reduce Inequalitiesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record