Show simple item record

dc.contributor.advisorHayatunnufus
dc.contributor.advisorEfendi, Syahril
dc.contributor.authorAmanda, Ellena
dc.date.accessioned2025-06-30T03:51:04Z
dc.date.available2025-06-30T03:51:04Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/104694
dc.description.abstractThis research focuses on the development of a classification system for tidal flood- affected areas using the Vision Transformer (ViT) model based on deep learning. Tidal floods are natural disasters that frequently occur in coastal regions such as Belawan, North Sumatra, significantly affecting the local population. The ViT model is employed to classify satellite imagery of the area into two categories: flood and no-flood. The dataset used comprises annotated satellite images that are then converted into mask PNG, processed into labelled patches. These patches are then augmented to enhance model generalization. The training results show a validation accuracy of 99%, while no-flood on unseen data yields an accuracy of 90.78% with an F1-score of 0.9065. These results indicate that ViT has strong potential in detecting tidal flood-affected areas automatically and efficiently. The system is implemented as a web application, where users are able to upload images and receive classification results.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectImage Classificationen_US
dc.subjectTidal Flooden_US
dc.subjectBelawanen_US
dc.subjectVision Transformeren_US
dc.subjectDeep Learningen_US
dc.titleKlasifikasi Area Terdampak Banjir Rob Menggunakan Model Vision Transformer (ViT) Berbasis Deep Learningen_US
dc.title.alternativeImage Classification for Tidal Flood-Affected Areas Using Vision Transformer (ViT) Model Based on Deep Learningen_US
dc.typeThesisen_US
dc.identifier.nimNIM201401004
dc.identifier.nidnNIDN0019079202
dc.identifier.nidnNIDN0010116706
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages64 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record