Show simple item record

dc.contributor.advisorSihombing, Poltak
dc.contributor.advisorEfendi, Syahril
dc.contributor.advisorFahmi
dc.contributor.authorSimangunsong, Pandi Barita Nauli
dc.date.accessioned2025-07-04T03:15:33Z
dc.date.available2025-07-04T03:15:33Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/104879
dc.description.abstractThis study proposes an improved DenseNet-SEGR model by integrating a novel Squeeze-and-Excitation (SE) block formulation to improve feature selection for tomato leaf disease classification such as color, texture, shape, spot pattern, leaf tissue. Unlike conventional approaches, the model replaces the standard Global Average Pooling (GAP) in the Squeeze mechanism with an integral-based formula, which enables more precise and continuous feature representation. This adaptation makes the model more sensitive to hard-to-detect disease patterns, thus providing better results compared to previous SE Blocks that only used the standard GAP method. SE Block dynamically recalibrates the importance of features across channels (color, texture, shape, spot pattern, leaf tissue), optimizing disease recognition. The model was trained using the PlantVillage dataset (12,246 images) and utilized augmentation techniques to improve generalization. Our method achieved 98.88% accuracy, significantly outperforming DenseNet-121, DenseNet-201, and MobileNetV2, while maintaining competitive computational efficiency. Statistical validation, confirmed the significance of our findings. These results demonstrate the potential of DenseNet-SEGR for real-time agricultural monitoring, enabling a scalable and efficient disease detection solution for precision agriculture.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectTomato Leaf Diseaseen_US
dc.subjectDensenet-SEGRen_US
dc.subjectClassificationen_US
dc.subjectDeep Learningen_US
dc.subjectOptimizationen_US
dc.titleOptimasi Model Klasifikasi Citra Digital terhadap Diagnosis Dini Penyakit Tanamanen_US
dc.title.alternativeOptimization of Digital Image Classification Models for Early Diagnosis of Plant Diseasesen_US
dc.typeThesisen_US
dc.identifier.nimNIM228123007
dc.identifier.nidnNIDN0017036205
dc.identifier.nidnNIDN0010116706
dc.identifier.nidnNIDN0009127608
dc.identifier.kodeprodiKODEPRODI55001#Ilmu Komputer
dc.description.pages135 Pagesen_US
dc.description.typeDisertasi Doktoren_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record