Show simple item record

dc.contributor.advisorLydia, Maya Silvi
dc.contributor.advisorAmalia
dc.contributor.authorWijaya, Filbert
dc.date.accessioned2025-07-16T03:48:57Z
dc.date.available2025-07-16T03:48:57Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/105554
dc.description.abstractHokkien is a dialect within the Southern Min language group and one of low-resource languages (LRLs). Natural language processing (NLP) task such as neural machine translation (NMT) on LRL can apply fine-tuning to mitigate limitation of LRL parallel corpus. Previous study that did fine-tuning on a large language model (LLM) to support with Hokkien translation task has not supported Indonesian translation, hence, this study will use fine-tuning on LLM to develop a language model that supports Hokkien – Indonesian translation task. The method that will be used in this study is quantized low-rank adaptation (QLoRA) fine-tuning. QLoRA uses lower computing resources than full fine-tuning that requires more resources. The LLM that will be used in this study is the Taigi-Llama-2-Translator-7B model, a LLaMA 2-based model with 7 billion parameters. This study will use dictionary, terminology, news, and transcription text dataset from sites of Taiwan Ministry of Education, Hugging Face, National Yang Ming Chiao Tung University (NYCU). The evaluation metrics to evaluate model performance before fine-tuning and after fine-tuning in this study is BLEU and chrF++. Study results show the model supports Indonesian translation after fine-tuning with performance increase on Hokkien – Indonesian translation with average score of BLEU from 0.01 to 0.16 and average score of chrF++ from 3.48 to 23.77.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectHokkienen_US
dc.subjectIndonesianen_US
dc.subjectLow-Resource Languageen_US
dc.subjectLarge Language Modelen_US
dc.subjectNeural Machine Translationen_US
dc.subjectFine-Tuningen_US
dc.subjectQuantized Low-Rank Adaptationen_US
dc.titleMesin Penerjemah Bahasa Hokkien-Indonesia dengan Fine-Tuning Quantized Low-Rank Adaptation (QLoRA) pada Large Language Model Meta AI (LLaMA)en_US
dc.title.alternativeHokkien-Indonesian Translator with Quantized Low-Rank Adaptation (QLoRA) Fine-Tuning on Large Language Model Meta AI (LLaMA)en_US
dc.typeThesisen_US
dc.identifier.nimNIM211401045
dc.identifier.nidnNIDN0027017403
dc.identifier.nidnNIDN0121127801
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages73 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record