Show simple item record

dc.contributor.advisorRahmat, Romi Fadillah
dc.contributor.advisorSiregar, Baihaqi
dc.contributor.authorSitorus, Sebastian Belmero
dc.date.accessioned2025-07-16T08:34:27Z
dc.date.available2025-07-16T08:34:27Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/105603
dc.description.abstractAccuracy in solar radiation prediction plays a crucial role in the development of renewable energy and climate research. This study implements the Deep Gaussian Process (DGP) method for solar radiation prediction with forecast horizons of 7, 14, 21, and 28 days ahead in Medan City, Indonesia. In contrast to conventional prediction methods, DGP offers the capability to capture complex non-linear relationships within meteorological data and provides uncertainty estimation, which is crucial for practical applications such as the management of solar power systems. This research utilizes the dataset 'Development of software for estimating clear sky solar radiation in Indonesia', where the implementation models data dynamics and effectively quantifies prediction uncertainty across various forecast horizons. The novelty of this research lies in the application of DGP, the focus on data from the tropical region of Indonesia, the implementation of the model using various training data subsets for each forecast horizon, and the emphasis on uncertainty estimation, which provides a significant contribution to the field of solar radiation prediction.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSolar Radiationen_US
dc.subjectPredictionen_US
dc.subjectGaussian Process (GP)en_US
dc.subjectDeep Gaussian Process (DGP)en_US
dc.subjectMachine Learningen_US
dc.titlePrediksi Radiasi Matahari Menggunakan Algoritma Deep Gaussian Processen_US
dc.title.alternativeSolar Radiation Prediction Using Deep Gaussian Process Algoritmen_US
dc.typeThesisen_US
dc.identifier.nimNIM191402113
dc.identifier.nidnNIDN0003038601
dc.identifier.nidnNIDN0008017906
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages97 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 7. Affordable And Clean Energyen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record