• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifikasi Teknik Pukulan Yang Digunakan Pada Permainan Bola Voli Menggunakan Yolo V8 Pose Estimation Dan Lstm

    Identification Of Hitting Techniques In Volleyball Using Yolov8 Pose Estimation And Long Short-Term Memory (Lstm)

    Thumbnail
    View/Open
    Cover (511.5Kb)
    Fulltext (4.164Mb)
    Date
    2025
    Author
    Tarihoran, Brian
    Advisor(s)
    Siregar, Baihaqi
    Zendrato, Niskarto
    Metadata
    Show full item record
    Abstract
    Volleyball involves a variety of dynamic hitting techniques, requiring intelligent approaches for accurate recognition and analysis. This study aims to develop a system for identifying volleyball hitting techniques using a computer vision-based method. The system utilizes YOLOv8 for body pose estimation and Long Short-Term Memory (LSTM) for temporal classification of movement sequences. The research methodology includes data collection, model training, system implementation, and performance evaluation. The results show that the developed system can identify hitting techniques with an accuracy of 94%, correctly classifying 235 out of 250 test samples. Performance evaluation using precision, recall, and f1-score metrics demonstrates consistent and reliable results across all technique classes. The implementation of LSTM proves effective in capturing sequential body movement patterns, enabling more accurate and context-aware classification. This study confirms that the combination of YOLOv8 and LSTM is a highly effective approach for analyzing sports techniques, with strong potential for further development in AI-based sports learning and training applications.
    URI
    https://repositori.usu.ac.id/handle/123456789/105670
    Collections
    • Undergraduate Theses [858]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV