Show simple item record

dc.contributor.advisorJaya, Ivan
dc.contributor.advisorPurnamasari, Fanindia
dc.contributor.authorPutra, Tri
dc.date.accessioned2025-07-19T02:07:45Z
dc.date.available2025-07-19T02:07:45Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/105797
dc.description.abstractComputer Vision Syndrome is becoming an increasingly alarming issue due to prolonged screen exposure, leading to eye strain, headaches, and visual discomfort. This system is designed with real-time detection capabilities to monitor the user's eye and facial positioning, issuing alerts in accordance with the implemented 20-20-20 rule. The MobileNet algorithm was chosen for its high efficiency, making it well-suited for deployment on resource-constrained devices, enabling precise detection without compromising system performance. MobileNet is employed in the development of two detection models: the Eye Gaze model and the Eye Blink model. The Eye Gaze model is designed to accurately determine the direction of a user's gaze, while the Eye Blink model detects blinking frequency and eye conditions, distinguishing between open and closed states. System testing yielded an accuracy rate of 100% for the Eye Gaze model based on 831 test cases, and 99.07% accuracy for the Eye Blink model based on 218 test cases. Based on these results, the system can be deemed highly optimal in detecting gaze direction and blinking as a supportive measure for the 20-20-20 method in the prevention of Computer Vision Syndrome.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectComputer Vision Syndromeen_US
dc.subjectEye Detectionen_US
dc.subjectFace Detectionen_US
dc.subject20-20-20 ruleen_US
dc.subjectMobileNeten_US
dc.subjectReal-timeen_US
dc.subjectEye Healthen_US
dc.subjectComputer Visionen_US
dc.titlePendeteksian Mata dan Wajah Secara Kontinu untuk Pemantauan Penggunaan Komputer dengan Menggunakan Algoritma Mobileneten_US
dc.title.alternativeContinuous Eye and Face Detection for Computer Usage Monitoring Using Mobilenet Algorithmen_US
dc.typeThesisen_US
dc.identifier.nimNIM181402070
dc.identifier.nidnNIDN0107078404
dc.identifier.nidnNIDN0017088907
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages61 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 3. Good Health And Well Beingen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record