Show simple item record

dc.contributor.advisorPulungan, Annisa Fadhillah
dc.contributor.advisorLubis, Muhammad Safri
dc.contributor.authorKaro, Maria Angel Carolin Br
dc.date.accessioned2025-07-21T03:25:48Z
dc.date.available2025-07-21T03:25:48Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/105937
dc.description.abstractTikTok is a social media platform that is free to use. This freedom has resulted in many users making various comments containing hate speech. This research aims to classify types of cyberbullying. This research uses the IndoBert Embedding and Support Vector Machine methods to create a machine learning model that can classify cyberbullying comments. This research uses Polynomial kernel with parameter C=10. The model is evaluated using F1 Score with cross validation technique to measure the model performance in cyberbullying classification. The results show that the Indobert Embedding and Support Vector Machine method can classify cyberbullying comments with an accuracy rate of 86% with cross validation evaluation and evaluation matrix.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectcyberbullyingen_US
dc.subjectcyberbullying classificationen_US
dc.subjectSupport vector machineen_US
dc.subjectIndobert Embeddingen_US
dc.titleKlasifikasi Cyberbullying pada Media Sosial Tiktok Menggunakan Indobert Embedding dan Support Vector Machineen_US
dc.title.alternativeClassification of Cyberbullying on Tiktok Social Media Using Indobert Embedding and Support Vector Machineen_US
dc.typeThesisen_US
dc.identifier.nimNIM201402104
dc.identifier.nidnNIDN0009089301
dc.identifier.nidnNIDN 0004037508
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages65 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 16. Peace, Justice And Strong Institutionsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record