• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Computer Science
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Computer Science
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementasi Algoritma YOLOv8, YOLOv9, dan YOLOv10 untuk Deteksi Senjata Tajam Secara Real Time

    Implementation of YOLOv8, YOLOv9, and YOLOv10 Algorithms for Real-Time Sharp Weapon Detection

    Thumbnail
    View/Open
    Cover (526.8Kb)
    Fulltext (2.572Mb)
    Date
    2025
    Author
    Andini, Nurul Bintang
    Advisor(s)
    Nababan, Anandhini Medianty
    Harumy, T Henny Febriana
    Metadata
    Show full item record
    Abstract
    Automatic detection of hazardous objects such as sharp weapons is increasingly important in supporting public security systems. The You Only Look Once (YOLO) algorithm is a widely used approach in Computer Vision due to its ability to detect objects quickly and accurately. This study aims to analyze and compare the performance of the three latest YOLO versions—YOLOv8, YOLOv9, and YOLOv10—in detecting sharp weapons through a web-based on-demand processing application. Evaluation is conducted using a dataset of sharp weapon images under various visual conditions. Each algorithm is assessed using evaluation metrics such as precision, recall, mean Average Precision (mAP), F1-score, and inference speed. The results show that YOLOv9 outperforms the others with a precision of 0.9577 and a mAP@0.5 of 0.9722. This research contributes to identifying the most optimal algorithm for AI-based surveillance systems, particularly in the context of public safety
    URI
    https://repositori.usu.ac.id/handle/123456789/106325
    Collections
    • Undergraduate Theses [1235]

    Related items

    Showing items related by title, author, creator and subject.

    • Implementasi Deep Learning untuk Sistem Deteksi Jalan Berlubang dengan Komparasi Metode YOLOv8 dan YOLOv9 

      Adithya, Donny (Universitas Sumatera Utara, 2025)
      This research implements and comparatively evaluates deep learning algorithms YOLOv8 and YOLOv9 for an automated classification system detecting road pothole damage using digital images. Road damage, with its complex visual ...
    • Deteksi Objek Abnormal Pada Paru-Paru Berdasarkan Citra X-Ray Toraks dengan Menggunakan Algoritma You Only Look Once (Yolo) 

      Adji, Wira Ardi Kesuma (Universitas Sumatera Utara, 2021)
      In diagnosing pulmonary diseases, physicians usually perform a radiologic examination on pulmonary conditions by ensuring the presence of special findings or abnormal conditions. Detecting abnormal conditions may be conducted ...
    • Pengenalan Plat Nomor Kendaraan pada Portal Kompleks Menggunakan Convolutional Neural Network 

      Silvianita, Helva (Universitas Sumatera Utara, 2021)
      Security in the living environment is one of the various factors that can impact and influence various aspects of a person's life. According to Police registration data, during the period 2017 to 2019, the crime rate ...

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV