• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediksi Trend Harga Saham Perusahaan Tambang Emas dengan Net Foreign Flow menggunakan Algoritma Extreme Learning Machine (ELM) dengan Particle Swarm Optimization (PSO) Berbasis Aplikasi Mobile

    Prediction Of Gold Mining Company Stock Price Trends Using Net Foreign Flow With Extreme Learning Machine (ELM) Algorithm Optimized By Particle Swarm Optimization (PSO) Based On A Mobile Application

    Thumbnail
    View/Open
    Cover (632.7Kb)
    Fulltext (2.055Mb)
    Date
    2025
    Author
    Clinton, Bill
    Advisor(s)
    Nababan, Erna Budhiarti
    Jaya, Ivan
    Metadata
    Show full item record
    Abstract
    This study discusses the development of a stock price movement prediction system for gold mining companies based on a mobile application by utilizing the Extreme Learning Machine (ELM) algorithm optimized using Particle Swarm Optimization (PSO). The dataset used consists of stock price data and Net Foreign Flow, which has undergone preprocessing stages and was divided into training, validation, and testing data. Hyperparameter tuning results indicate that applying the sigmoid activation function with 9 hidden neurons produces the best validation performance with an RMSE value of 5.84. Meanwhile, the ELM-PSO combination achieved optimal validation performance with an RMSE of 5.6021. In the testing phase, the ELM model obtained an RMSE value of 15.44, while the ELM-PSO model produced an RMSE of 18.0837. The results of this study show that the ELM algorithm is quite effective in modeling stock price fluctuations, while the PSO optimization improves accuracy during the validation stage.
    URI
    https://repositori.usu.ac.id/handle/123456789/106376
    Collections
    • Undergraduate Theses [858]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV