• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Digraf Eksentrik dari Graf Barbel

    Eccentric Digraph of Barbell Graph

    Thumbnail
    View/Open
    Cover (1.144Mb)
    Fulltext (1.634Mb)
    Date
    2025
    Author
    Azmi, Nurul
    Advisor(s)
    Syahmarani, Aghni
    Metadata
    Show full item record
    Abstract
    This study investigates the structure of the eccentric digraph ED(G) of barbell graphs, which are formed by connecting two graphs (either complete or cyclic) via a path. The four types of barbell graphs analyzed include: (1) symmetric complete barbell graphs B\left(K_n,P_m\right), (2) asymmetric complete barbell graphs B\left(K_{n_1},K_{n_2},P_m\right), (3) symmetric cyclic barbell graphs B\left(C_n,P_m\right), and (4) asymmetric cyclic barbell graphs B\left(C_{n_1},C_{n_2},P_m\right). The method utilizes the Breadth-First Search (BFS) algorithm to compute vertex eccentricities and determine the direction of arcs in ED(G). The main findings show that for symmetric complete barbell graphs, ED(G) forms a combined structure of K_{n-1,n-1}^\leftrightarrow\ and\ K_{1,n-1}^\rightarrow, with an additional K_{1,2n-2}^\rightarrow component when m is odd. For asymmetric complete barbell graphs, the digraph includes K_{n_1-1,n_2-1}^\leftrightarrow and asymmetrically distributed components K_{1,n_1-1}^\rightarrow\ and\ K_{1,n_2-1}^\rightarrow, depending on the parity of m. In symmetric cyclic barbell graphs, the structure of ED(G) varies according to the parity of n\ and \ m\ , yielding combinations such as \vec{K_{n,1}},\vec{K_{1,1}},\vec{K_{1,2}},or\ \vec{K_{n,2}},\vec{K_{1,4}}. Meanwhile, asymmetric cyclic barbell graphs exhibit additional complexity, where vertex eccentricities are influenced by the interaction among \left\lfloor n_1/2\right\rfloor,\left\lfloor n_2/2\right\rfloor, and the path length m. Overall, the structure of ED(G)is determined by three key factors: the type and symmetry of the component graphs, the parity of the connecting path length, and the diameter relations between components. The BFS algorithm proves effective for analyzing eccentricity in large-scale graphs, and the findings offer a comprehensive theoretical framework for characterizing eccentric digraphs of barbell graph classes.
    URI
    https://repositori.usu.ac.id/handle/123456789/106502
    Collections
    • Undergraduate Theses [1470]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV