Show simple item record

dc.contributor.advisorSyahmarani, Aghni
dc.contributor.authorAzmi, Nurul
dc.date.accessioned2025-07-23T09:36:39Z
dc.date.available2025-07-23T09:36:39Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/106502
dc.description.abstractThis study investigates the structure of the eccentric digraph ED(G) of barbell graphs, which are formed by connecting two graphs (either complete or cyclic) via a path. The four types of barbell graphs analyzed include: (1) symmetric complete barbell graphs B\left(K_n,P_m\right), (2) asymmetric complete barbell graphs B\left(K_{n_1},K_{n_2},P_m\right), (3) symmetric cyclic barbell graphs B\left(C_n,P_m\right), and (4) asymmetric cyclic barbell graphs B\left(C_{n_1},C_{n_2},P_m\right). The method utilizes the Breadth-First Search (BFS) algorithm to compute vertex eccentricities and determine the direction of arcs in ED(G). The main findings show that for symmetric complete barbell graphs, ED(G) forms a combined structure of K_{n-1,n-1}^\leftrightarrow\ and\ K_{1,n-1}^\rightarrow, with an additional K_{1,2n-2}^\rightarrow component when m is odd. For asymmetric complete barbell graphs, the digraph includes K_{n_1-1,n_2-1}^\leftrightarrow and asymmetrically distributed components K_{1,n_1-1}^\rightarrow\ and\ K_{1,n_2-1}^\rightarrow, depending on the parity of m. In symmetric cyclic barbell graphs, the structure of ED(G) varies according to the parity of n\ and \ m\ , yielding combinations such as \vec{K_{n,1}},\vec{K_{1,1}},\vec{K_{1,2}},or\ \vec{K_{n,2}},\vec{K_{1,4}}. Meanwhile, asymmetric cyclic barbell graphs exhibit additional complexity, where vertex eccentricities are influenced by the interaction among \left\lfloor n_1/2\right\rfloor,\left\lfloor n_2/2\right\rfloor, and the path length m. Overall, the structure of ED(G)is determined by three key factors: the type and symmetry of the component graphs, the parity of the connecting path length, and the diameter relations between components. The BFS algorithm proves effective for analyzing eccentricity in large-scale graphs, and the findings offer a comprehensive theoretical framework for characterizing eccentric digraphs of barbell graph classes.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectEccentricityen_US
dc.subjectEccentric Digraphen_US
dc.subjectBarbell Graphen_US
dc.subjectComplete Barbell Graphen_US
dc.subjectCycle Barbell Graphen_US
dc.titleDigraf Eksentrik dari Graf Barbelen_US
dc.title.alternativeEccentric Digraph of Barbell Graphen_US
dc.typeThesisen_US
dc.identifier.nimNIM210803067
dc.identifier.nidnNIDN0009128703
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages79 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record