• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Perbandingan Tingkat Akurasi antara Support Vector Machine (SVM) Menggunakan Kernel Polinomial & Kernel Radial Basis Function (RBF) Untuk Klasifikasi Penyakit Polycystic Ovary Syndrome (PCOS)

    Comparison of Accuracy Level Between Support Vector Machine (SVM) Using Polynomial Kernel & Radial Basis Function (RBF) Kernel For Classification of Polycystic Ovary Syndrome (PCOS)

    Thumbnail
    View/Open
    Cover (894.4Kb)
    Fulltext (1.361Mb)
    Date
    2025
    Author
    Br Situmorang, Winda Fortuna
    Advisor(s)
    Yanti, Maulida
    Metadata
    Show full item record
    Abstract
    Polycystic Ovary Syndrome (PCOS) is a hormonal disorder that is common in women of reproductive age. Early diagnosis of PCOS is very important to prevent long-term complications. In this study, the author classified PCOS data using the Support Vector Machine (SVM) method with two types of kernels, namely the Polynomial Kernel and the Radial Basis Function (RBF) Kernel, and compared it to the Logistic Regression method. The classification process uses a dataset that has been processed through the preprocessing and data division stages. The training and testing processes are carried out to evaluate model performance. The SVM model with the Polynomial Kernel produces an accuracy of 71%, while the SVM model with the RBF Kernel produces an accuracy of 72%. In comparison, the Logistic Regression method obtained the highest accuracy of 74%. These results indicate that SVM with the RBF Kernel is able to provide competitive performance compared to other methods, especially in handling non-linear data.
    URI
    https://repositori.usu.ac.id/handle/123456789/106796
    Collections
    • Undergraduate Theses [1470]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV