Show simple item record

dc.contributor.advisorYanti, Maulida
dc.contributor.authorBr Situmorang, Winda Fortuna
dc.date.accessioned2025-07-24T03:30:48Z
dc.date.available2025-07-24T03:30:48Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/106796
dc.description.abstractPolycystic Ovary Syndrome (PCOS) is a hormonal disorder that is common in women of reproductive age. Early diagnosis of PCOS is very important to prevent long-term complications. In this study, the author classified PCOS data using the Support Vector Machine (SVM) method with two types of kernels, namely the Polynomial Kernel and the Radial Basis Function (RBF) Kernel, and compared it to the Logistic Regression method. The classification process uses a dataset that has been processed through the preprocessing and data division stages. The training and testing processes are carried out to evaluate model performance. The SVM model with the Polynomial Kernel produces an accuracy of 71%, while the SVM model with the RBF Kernel produces an accuracy of 72%. In comparison, the Logistic Regression method obtained the highest accuracy of 74%. These results indicate that SVM with the RBF Kernel is able to provide competitive performance compared to other methods, especially in handling non-linear data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPCOSen_US
dc.subjectClassificationen_US
dc.subjectSupport Vector Machineen_US
dc.subjectPolynomial Kernelen_US
dc.subjectRBF Kernelen_US
dc.subjectLogistic Regressionen_US
dc.titlePerbandingan Tingkat Akurasi antara Support Vector Machine (SVM) Menggunakan Kernel Polinomial & Kernel Radial Basis Function (RBF) Untuk Klasifikasi Penyakit Polycystic Ovary Syndrome (PCOS)en_US
dc.title.alternativeComparison of Accuracy Level Between Support Vector Machine (SVM) Using Polynomial Kernel & Radial Basis Function (RBF) Kernel For Classification of Polycystic Ovary Syndrome (PCOS)en_US
dc.typeThesisen_US
dc.identifier.nimNIM200803039
dc.identifier.nidnNIDN0024109003
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages61 pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 3. Good Health And Well Beingen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record