Show simple item record

dc.contributor.advisorMahyuddin
dc.contributor.advisorElveny, Marischa
dc.contributor.authorZaman, Fauzan
dc.date.accessioned2025-07-24T03:51:12Z
dc.date.available2025-07-24T03:51:12Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/106858
dc.description.abstractThe rapid growth of online shopping has driven the increasing need for accurate demand prediction in logistics and courier service companies. However, this demand presents challenges due to imbalanced data, which causes predictive models to be biased toward the majority class. This study proposes a combined approach using the Synthetic Minority Over-sampling Technique (SMOTE) and K-Means clustering to address data imbalance, along with the Extreme Gradient Boosting (XGBoost) algorithm as the predictive model. A historical dataset consisting of 45,684 entries was used, including features such as quantity, unit, weight, and destination. The research stages included preprocessing, normalization, clustering, evaluation (using silhouette score, Davies-Bouldin index, and Calinski-Harabasz score), and oversampling of minority clusters. The application of SMOTE for handling imbalanced data proved to enhance model performance, Despite the enhancement being rather modest owing to the initial model's already robust performance. Nevertheless, in the context of imbalanced data, such improvement is meaningful as it indicates that the minority class receives more balanced attention from the model.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPredictionen_US
dc.subjectExtreme Gradient Boosting (XGBoost)en_US
dc.subjectK-Meansen_US
dc.subjectSynthetic Minority Over-sampling Technique (SMOTE)en_US
dc.subjectImbalance dataen_US
dc.titlePenanganan Imbalance Data pada Hasil Klaster dengan SMOTE untuk Prediksi Permintaan Perusahaan Ekspedisi Menggunakan XGBoosten_US
dc.title.alternativeHandling Imbalanced Data in Clustering Results Using SMOTE for Demand Prediction in Logistics Companies with XGBoosten_US
dc.typeThesisen_US
dc.identifier.nimNIM237056005
dc.identifier.nidnNIDN0025126703
dc.identifier.nidnNIDN0127039001
dc.identifier.kodeprodiKODEPROD49302#Sains Data dan Kecerdasan Buatan
dc.description.pages109 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record