Show simple item record

dc.contributor.advisorManurung, Asima
dc.contributor.authorManik, Helena Tania
dc.date.accessioned2025-07-24T04:04:59Z
dc.date.available2025-07-24T04:04:59Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/106901
dc.description.abstractFood crops play an essential role in meeting the basic needs of society, particularly rice, maize, and soybeans. This study aims to forecast national rice production by considering data patterns with trend and seasonal components. The method used is Holt-Winters Exponential Smoothing with a quantitative approach using secondary data. The analysis shows that the multiplicative Holt-Winters model is the best, with parameters α = 0.128, β = 0, and γ = 0.437. The model's Mean Absolute Percentage Error (MAPE) is 19.63%, indicating good forecasting accuracy in the range of 10-20%. The 2025 forecast shows an increase in rice production compared to previous years, suggesting improvements by stakeholders in maintaining future national food production stability.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectForecastingen_US
dc.subjectHolt-Winters Exponential Smoothing Methoden_US
dc.subjectFood Cropsen_US
dc.titlePenerapan Metode Holt-Winters Exponential Smoothing Dalam Meramalkan Produksi Tanaman Pangan Nasional Tahun 2025en_US
dc.title.alternativeApplication Of Holt-Winters Exponential Smoothing Method In Forecasting National Food Crop Production In 2025en_US
dc.typeThesisen_US
dc.identifier.nimNIM222407036
dc.identifier.nidnNIDN0015037310
dc.identifier.kodeprodiKODEPRODI49401#Statistika
dc.description.pages58 Pagesen_US
dc.description.typeKertas Karya Diplomaen_US
dc.subject.sdgsSDGs 2. Zero Hungeren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record