Show simple item record

dc.contributor.advisorSyahmarani, Aghni
dc.contributor.authorTanjung, Khatimatul Husna
dc.date.accessioned2025-07-24T09:59:35Z
dc.date.available2025-07-24T09:59:35Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/107277
dc.description.abstractAn automorphism of a graph G is an isomorphism of the graph G to itself, which is a bijective mapping that preserves adjacency between the vertices in the graph G. This study focuses on the generalized butterfly graph, denoted as BFn, which is generated by inserting vertices into all wings with the same number of insertions. The graph BFn has 2n + 1 vertices and 4n − 2 edges, with the vertex set V (BFn) = {vi | i = 0, 1, 2, . . . , 2n}and the edge set E(BFn) = (vi , vi+1) | i = 1, 2, . . . , n − 1, n + 1, . . . , 2n − 1 ∪ (v0, vi) | i = 1, 2, . . . , 2n. The results of this study show that there are exactly 2 automorphisms when (n = 1), and 8 automorphisms for each (n ≥ 2). This study also proves that the set of all automorphisms of the butterfly graph BFn can form a group, known as the automorphism group.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectGraph automorphismsen_US
dc.subjectButterfly graphen_US
dc.subjectAutomorphism groupen_US
dc.titleAutomorfisma Graf Kupu-kupuen_US
dc.title.alternativeButterfly Graph Automorphismen_US
dc.typeThesisen_US
dc.identifier.nimNIM210803047
dc.identifier.nidnNIDN0009128703
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages48 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record