Show simple item record

dc.contributor.advisorEfendi, Syahril
dc.contributor.advisorSihombing, Poltak
dc.contributor.advisorMawengkang, Herman
dc.contributor.authorSarif, Muhammad Irfan
dc.date.accessioned2025-07-31T02:32:14Z
dc.date.available2025-07-31T02:32:14Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/107918
dc.description.abstractTraditional fish farming faces various challenges, including a high dependence on environmental factors that affect fish growth and health, where water quality and parameter monitoring are still done manually. This research aims to analyze specific issues occurring in fish farming, develop an Internet of Things (IoT) model, apply a Machine Learning (ML) approach in fish farming, and integrate the Internet of Things (IoT) model and Machine Learning (ML) approach in fish farming. The method used involves collecting data from various sensors installed in fish ponds, such as temperature, pH, and oxygen levels. This data is then analyzed using Machine Learning algorithms to predict optimal conditions for fish growth. The research results show that this model can improve farming efficiency, reduce the risk of fish mortality, and increase harvest yields. In conclusion, the application of IoT and ML technology in fish farming can provide innovative and sustainable solutions to enhance productivity and sustainability in the fisheries sector.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectInternet of Thingsen_US
dc.subjectMachine learningen_US
dc.subjectFish Farmingen_US
dc.subjectPredictionen_US
dc.subjectEnvironmental Monitoringen_US
dc.titlePengembangan Model IoT dan Pendekatan Machine Learning (ML) pada Budidaya Perikananen_US
dc.title.alternativeDevelopment of IoT Models and Machine Learning (ML) Approaches in Fishery Cultivationen_US
dc.typeThesisen_US
dc.identifier.nimNIM228123009
dc.identifier.nidnNIDN0010116706
dc.identifier.nidnNIDN0017036205
dc.identifier.nidnNIDN8859540017
dc.identifier.kodeprodiKODEPRODI55001#Ilmu Komputer
dc.description.pages112 Pagesen_US
dc.description.typeDisertasi Doktoren_US
dc.subject.sdgsSDGs 1. No Povertyen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record