Show simple item record

dc.contributor.advisorYanti, Maulida
dc.contributor.authorFadhilah, Syarifah
dc.date.accessioned2025-10-06T05:25:04Z
dc.date.available2025-10-06T05:25:04Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/108980
dc.description.abstractThis study examines the optimization of the C parameter defined as the inverse of λ in the LASSO logistic regression model by comparing three cross-validation methods: KFold, Stratified KFold (SKF), and Repeated Stratified KFold (RSKF). Three ranges of C values (0.01–0.1, 0.0001–0.0251, and 0.1–316.2) were evaluated using log loss as the primary metric and F1-score as a secondary measure, while also considering the number of selected variables. The results show that the optimal C value leads to varying levels of variable selection. On the original dataset, C = 0.1 selected 8 out of 11 variables with an F1-score of 0.911 and a log loss of 0.303. For simulated data I (n = 150), C = 0.1 retained all 11 variables with no selection and an F1-score of 0.837. On simulated data II (n = 550),C = 0.0251 selected 11 of 15 variables (removing 4 noise variables) with an F1-score of 0.845. For simulated data III (n = 1500), the same C value selected 16 of 20 variables, eliminating 4 noise variables, with an F1-score of 0.884. The findings indicate that Stratified KFold provides the most stable results for imbalanced data. The smaller C range (0.0251–0.0001) was effective in filtering out noise variables, whereas larger ranges tended to retain more variables. A small difference between training and testing F1-scores (< 0.05) suggests stable models.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectLASSO logistic regressionen_US
dc.subjectparameter C optimizationen_US
dc.subjectvariable selectionen_US
dc.subjectcross-validationen_US
dc.subjectlog lossen_US
dc.titleOptimasi Parameter Tuning pada Model Regresi Logistik Lassoen_US
dc.title.alternativeOptimization of Parameter Tuning in the Lasso Logistic Regression Modelen_US
dc.typeThesisen_US
dc.identifier.nimNIM210803115
dc.identifier.nidnNIDN0024109003
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages59 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record