• Login
    View Item 
    •   USU-IR Home
    • Faculty of Agriculture
    • Department of Agricultural Engineering and Biosystem
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Agriculture
    • Department of Agricultural Engineering and Biosystem
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pendugaan Produktivitas Komoditi Bawang Merah (Allium Ascalonicum L.) dengan menggunakan Machine Learning

    Estimation of Shallot (Allium ascalonicum L.) Productivity Using Machine Learning

    Thumbnail
    View/Open
    Cover (1.042Mb)
    Fulltext (2.397Mb)
    Date
    2025
    Author
    Akbar, Abdi
    Advisor(s)
    Harahap, Lukman Adlin
    Metadata
    Show full item record
    Abstract
    Productivity estimation is one of the important aspects that can provide information for effective and efficient decision making, especially in the shallot farming sector in the Deli Serdang area. This study aims to predict the productivity value of shallot plants (Allium Ascalonicum L.) using machine learning, especially in Deli Serdang district. In this study, two machine learning algorithms were used; namely Backpropagation Neural Network (BPNN) and Deep Neural Network (DNN) to predict shallot productivity based on historical data which includes climate data, harvest area and production in the Deli Serdang area for the last 10 years. The results show that for the best BPNN prediction value is MAE of 0.638 from the value of harvest area and MAPE of 6.553 from the value of productivity, while for the DNN prediction value, the best result is MAE of 0.575 from the value of harvest area and MAPE of 2.161 from the value of productivity.
    URI
    https://repositori.usu.ac.id/handle/123456789/109307
    Collections
    • Undergraduate Theses [1051]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV