Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorSirait, Yosef Stepanus
dc.date.accessioned2025-10-15T12:46:51Z
dc.date.available2025-10-15T12:46:51Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/109553
dc.description.abstractThe ARIMA model is one of the most widely used methods in time series analysis, particularly for forecasting. The accuracy of the ARIMA model strongly depends on precise parameter estimation. The aim of this study is to estimate the parameters of the ARIMA(1,1,1) model and to compare the performance of three estimation methods, namely Maximum Likelihood Estimation (MLE), Metropolis-Hastings (MH), and Gibbs Sampling (GS), using both simulated data and real stock data. The simulated data were generated with various sample sizes, including the addition of outliers, to assess the robustness of each method against extreme values. The results show that Gibbs Sampling provides the most accurate estimates for small samples, while MetropolisHastings performs better with medium-sized samples and real stock data, yielding the lowest prediction errors. MLE produces reliable results for normally distributed large samples, particularly due to its computational efficiency. These findings indicate that Bayesian approaches, especially Metropolis-Hastings, are more robust for parameter estimation of ARIMA models in real data and medium-sized samples, while Gibbs Sampling is particularly useful for small samples or data with outliers, and MLE remains effective for large and normally distributed datasets.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectARIMAen_US
dc.subjectMetropolis-Hastingsen_US
dc.subjectGibbs Samplingen_US
dc.subjectBayesianen_US
dc.subjectMaximum Likelihood Estimationen_US
dc.subjectForecastingen_US
dc.titlePenaksiran Parameter Model ARIMA dengan Metropolis-Hastings dan Gibbs Samplingen_US
dc.title.alternativeParameter Estimation of ARIMA Model Using Metropolis-Hastings and Gibbs Samplingen_US
dc.typeThesisen_US
dc.identifier.nimNIM210803059
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages86 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 8. Decent Work And Economic Growthen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record