Show simple item record

dc.contributor.advisorSamsuri
dc.contributor.advisorMasruroh, Heni
dc.contributor.authorSIMAMORA, AHMAD BAHREIN
dc.date.accessioned2025-10-17T03:07:33Z
dc.date.available2025-10-17T03:07:33Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/109700
dc.description.abstractFloods pose a significant threat to the Asahan Toba Watershed in North Sumatra, primarily driven by high rainfall, land use changes, and geomorphological conditions. This study aims to identify flood-prone areas and predict flood risk using an Artificial Neural Network (ANN). Key parameters include rainfall, river proximity, elevation, soil type, slope, and land cover. Data were processed with Geographic Information Systems (GIS) and modeled in TensorFlow using Python. The ANN achieved an accuracy of 85% and was validated against real flood events in 2024. Flood risk zoning maps highlight high-risk areas, particularly in Bandar Pulau and Simpang Empat sub-districts. The findings confirm that ANN is an effective tool for spatial flood risk prediction and early warning, supporting disaster mitigation and watershed management strategies.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectAsahan Toba Watersheden_US
dc.subjectFlooden_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectGISen_US
dc.subjectDisaster Mitigationen_US
dc.titleAnalisis Tingkat Kerawanan Banjir Menggunakan Machine Learning Artificial Neural Network (ANN) dan Geospasialen_US
dc.title.alternativeAnalysis of Flood Vulnerability Using Machine Learning Artificial Neural Network (ANN) and Geospatialen_US
dc.typeThesisen_US
dc.identifier.nimNIM211201111
dc.identifier.nidnNIDN0009017404
dc.identifier.kodeprodiKODEPRODI54251#Kehutanan
dc.description.pages79 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 13. Climate Actionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record