Show simple item record

dc.contributor.advisorHakim, Lukman
dc.contributor.authorZahara, Nur Fithrah
dc.date.accessioned2025-10-20T02:04:30Z
dc.date.available2025-10-20T02:04:30Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/109828
dc.description.abstractThis research aims to develop a microcontroller-based metal detection system with the integration of the Deep Neural Network (DNN) method to improve the accuracy of metal type classification. The DNN method here uses infrared sensors as auxiliary sensors because the inductive proximity sensor used can only detect the presence or absence of metals. The system is designed with a microcontroller capable of running a lightweight DNN model. Metal sensors such as inductive proximity and infrared sensors are used to generate input data. The data is then processed to be classified by the DNN model and find out how much metal passes through the sensor and what the frequency. And the manufacture of the tool was successfully carried out with the test results of 5 metals detected with frequencies of 0.000 Hz, 0.133 Hz, 0.099 Hz, 0.119 Hz, 0.060 Hz. Using the tool made, the test results are still not perfect but can be refined if more suitable components are used.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMetalen_US
dc.subjectDeep Neural Networken_US
dc.subjectArduino Unoen_US
dc.titleImplementasi Metode Deep Neural Network dalam Sistem Pendeteksi Logam Berbasis Mikrokontroleren_US
dc.title.alternativeImplementation of Deep Neural Network Method in Microcontroller-Based Metal Detection Systemen_US
dc.typeThesisen_US
dc.identifier.nimNIM222411064
dc.identifier.nidnNIDN0022088105
dc.identifier.kodeprodiKODEPRODI2040#Metrologi dan Instrumentasi
dc.description.pages40 Pagesen_US
dc.description.typeKertas Karya Diplomaen_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record