• Login
    View Item 
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementasi Prediksi Suhu menggunakan Akselerasi Systolic Array dengan Machine Learning pada Edge Computing

    Implementation of Temperature Prediction using Systolic Array Acceleration with Machine Learning on Edge Computing

    Thumbnail
    View/Open
    Cover (2.960Mb)
    Fulltext (9.566Mb)
    Date
    2025
    Author
    Damanik, Debora Jennifer
    Advisor(s)
    Fauzi, Rahmad
    Metadata
    Show full item record
    Abstract
    As the volume of data from Internet of Things (IoT) devices increases, efficient data processing at the edge has become a must to overcome latency and bandwidth limitations. This study aims to design and implement an accelerated Artificial Neural Network (ANN)-based temperature prediction system using systolic array architecture on the Kria KV260 Field-Programmable Gate Array (FPGA) platform for edge computing applications. The ANN model used is the Feedforward Multilayer Perceptron which is trained using historical temperature data. The 9x9 systolic array architecture is designed to accelerate the matrix multiplication operations that are dominant in ANN inference. The system implementation is carried out by integrating the hardware accelerator on the FPGA with the Zynq UltraScale+ MPSoC processor system. The results of the CPU test showed that the ANN model achieved high accuracy with a Mean Squared Error (MSE) of 0.0313, Mean Absolute Error (MAE) of 0.1417, and an R-squared (R²) of 0.9457. Hardware evaluations show efficient resource utilization and low power consumption, proving that acceleration using systolic arrays on FPGAs is an effective and high-performance solution for real-time machine learning applications in edge computing environments
    URI
    https://repositori.usu.ac.id/handle/123456789/109890
    Collections
    • Undergraduate Theses [1527]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV