Show simple item record

dc.contributor.advisorFauzi, Rahmad
dc.contributor.authorDamanik, Debora Jennifer
dc.date.accessioned2025-10-20T05:33:34Z
dc.date.available2025-10-20T05:33:34Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/109890
dc.description.abstractAs the volume of data from Internet of Things (IoT) devices increases, efficient data processing at the edge has become a must to overcome latency and bandwidth limitations. This study aims to design and implement an accelerated Artificial Neural Network (ANN)-based temperature prediction system using systolic array architecture on the Kria KV260 Field-Programmable Gate Array (FPGA) platform for edge computing applications. The ANN model used is the Feedforward Multilayer Perceptron which is trained using historical temperature data. The 9x9 systolic array architecture is designed to accelerate the matrix multiplication operations that are dominant in ANN inference. The system implementation is carried out by integrating the hardware accelerator on the FPGA with the Zynq UltraScale+ MPSoC processor system. The results of the CPU test showed that the ANN model achieved high accuracy with a Mean Squared Error (MSE) of 0.0313, Mean Absolute Error (MAE) of 0.1417, and an R-squared (R²) of 0.9457. Hardware evaluations show efficient resource utilization and low power consumption, proving that acceleration using systolic arrays on FPGAs is an effective and high-performance solution for real-time machine learning applications in edge computing environmentsen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectEdge Computingen_US
dc.subjectTemperature Predictionen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectField Programmable Gate Array (FPGA)en_US
dc.subjectSystolic Arrayen_US
dc.titleImplementasi Prediksi Suhu menggunakan Akselerasi Systolic Array dengan Machine Learning pada Edge Computingen_US
dc.title.alternativeImplementation of Temperature Prediction using Systolic Array Acceleration with Machine Learning on Edge Computingen_US
dc.typeThesisen_US
dc.identifier.nimNIM210402031
dc.identifier.nidnNIDN0024046903
dc.identifier.kodeprodiKODEPRODI20201#Teknik Elektro
dc.description.pages72 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record