Show simple item record

dc.contributor.advisorSitompul, Opim Salim
dc.contributor.advisorAmalia
dc.contributor.authorButar-Butar, Yulia Shafira
dc.date.accessioned2025-10-24T02:25:10Z
dc.date.available2025-10-24T02:25:10Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/110455
dc.description.abstractFood security remains a key concern in sustainable development, especially in regions like East Nusa Tenggara (NTT) that are prone to drought and land conversion. This study aims to explore future food security in NTT by applying spatial data and predictive models to forecast conditions in 2030. Two main approaches were used: the Cellular Automata–Artificial Neural Network (CA–ANN) model to simulate land cover changes, and the Random Forest Regressor to predict rice productivity using environmental variables such as NDVI, land surface temperature, rainfall, elevation, and slope. The CA–ANN model showed strong spatial accuracy at 87.6%, with results indicating a decrease in cropland in several areas. The Random Forest model performed well with an R² of 0.90 and RMSE of 1.74, highlighting elevation and temperature as key drivers of productivity. By 2030, projections suggest a rice deficit of 221,000 tons, equivalent to more than 790 billion kilocalories. These findings underscore the urgency for local governments to adopt data-driven approaches when planning for sustainable food security in the years ahead.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectFood Securityen_US
dc.subjectEast Nusa Tenggaraen_US
dc.subjectRice Predictionen_US
dc.subjectRandom Foresten_US
dc.subjectCellular Automataen_US
dc.subjectSpatial Dataen_US
dc.titleAnalisis Prediktif Ketahanan Pangan Berbasis Data Spasial dengan Metode Random Forest Dan Cellular Automata di Provinsi Nusa Tenggara Timuren_US
dc.title.alternativePredictive Analysis of Food Security Based on Spatial Data Using Random Forest and Cellular Automata Methods in East Nusa Tenggara Provinceen_US
dc.typeThesisen_US
dc.identifier.nimNIM237056003
dc.identifier.nidnNIDN0017086108
dc.identifier.nidnNIDN0121127801
dc.identifier.kodeprodiKODEPRODI49302#Sains Data dan Kecerdasan Buatan
dc.description.pages82 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 2. Zero Hungeren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record