Show simple item record

dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.advisorSitompul, Opim Salim
dc.contributor.authorRamadhana, Sari
dc.date.accessioned2025-12-23T03:22:03Z
dc.date.available2025-12-23T03:22:03Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/111225
dc.description.abstractThis study proposes Deep Support Vector Data Description (Deep-SVDD) as an anomaly-detection approach for credit-insurance claim submissions processed via host-to-host systems. Operational tabular data (5,000 observations) were prepared through an anti-leakage pipeline (deduplication, standardization, outlier handling, categorical encoding, and numeric scaling) and a time-based split (Train/Validation/Test). The model was trained on a Train-Normal subset to learn normality patterns, while PCA and HDBSCAN were used as supporting analyses in the latent space to enhance interpretability. Anomaly scores were converted into decisions using a percentile-based threshold aligned with audit capacity and then frozen prior to testing. Results indicate strong performance under class imbalance reflected by PR-AUC = 0.9673 and operational effectiveness through Recall@20 ≈ 44.19%, positioning the model as a precision-oriented, efficient, and accountable first-line detector that reduces manual verification workload while maintaining decision transparency.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectDeep SVDDen_US
dc.subjectanomaly detectionen_US
dc.subjectcredit insuranceen_US
dc.subjecthost-to-hosten_US
dc.subjectdata-driven claim verificationen_US
dc.titleDeep Support Vector Data Description dalam Penanganan Anomali pada Proses Pengajuan Klaim Asuransi Krediten_US
dc.title.alternativeDeep Support Vector Data Description for Anomaly Detection in Credit Insurance Claim Processesen_US
dc.typeThesisen_US
dc.identifier.nimNIM237056001
dc.identifier.nidnNIDN0026106209
dc.identifier.nidnNIDN0017086108
dc.identifier.kodeprodiKODEPROD49302#Sains Data dan Kecerdasan Buatan
dc.description.pages91 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 8. Decent Work And Economic Growthen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record