Show simple item record

dc.contributor.advisorCandra, Ade
dc.contributor.advisorSutarman
dc.contributor.authorSyah, Wahyu Hildan
dc.date.accessioned2026-01-05T07:44:17Z
dc.date.available2026-01-05T07:44:17Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/111672
dc.description.abstractThe Gray Wolf Optimizer (GWO) algorithm is an optimization method inspired by the social hierarchy and hunting behavior of gray wolves. Gray wolves are categorized as alpha, beta, delta, and omega. From the initial population of wolves ‘P’, the one closest to the prey becomes the alpha. In the fuzzy rule development system, the Gray Wolf Optimizer algorithm is used to optimize Mamdani fuzzy rules, contributing to improved accuracy in predicting maritime safety. This is essential to ensure operational safety in maritime navigation by considering various factors that influence sailing conditions. The Mamdani fuzzy system used in this model is capable of handling uncertainty and ambiguity in the data related to factors affecting maritime safety. The Gray Wolf Optimizer algorithm aids in optimizing the fuzzy rules to produce more accurate predictions. Based on a comparison of optimization results, the model developed using the Gray Wolf Optimizer and Mamdani fuzzy system demonstrates better performance than conventional methods in terms of maritime safety prediction accuracy.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectGray Wolf Optimizeren_US
dc.subjectFuzzy Mamdanien_US
dc.subjectMaritime Safetyen_US
dc.titlePengembangan Aturan Fuzzy Mamdani Menggunakan Algoritma Gray Wolf Optimizer (GWO) dalam Menentukan Prediksi Keselamatan Pelayaranen_US
dc.title.alternativeDevelopment of Mamdani Fuzzy Rule-Based System Using the Gray Wolf Optimizer (GWO) Algorithm for Maritime Safety Predictionen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038029
dc.identifier.nidnNIDN0004097901
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages105 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record