• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studi Komparatif Random Forest dan Regresi Logistik Elastic Net pada Klasifikasi Status Pulang FKTP BPJS Kesehatan: Kajian F1-Score, PR-AUC, dan Brier Score

    Comparative Study of Random Forest and Elastic Net Logistic Regression in Classifying Patient Discharge Status at BPJS Kesehatan Primary Healthcare Facilities: An Evaluation Based on F1-Score, PR AUC, and Brier Score

    Thumbnail
    View/Open
    Cover (1.361Mb)
    Fulltext (7.349Mb)
    Date
    2026
    Author
    Hutabarat, David Kevin Handel
    Advisor(s)
    Sawaluddin, Sawaluddin
    Metadata
    Show full item record
    Abstract
    This study analyzes and compares the performance of Random Forest and Elastic Net Logistic Regression (SAGA solver) for classifying patient discharge status at BPJS Kesehatan Primary Care Facilities (FKTP). The dataset is large-scale, contains exclusively nominal predictors, and exhibits class imbalance (approximately 64.9% majority class). The experimental design employs an 80%/20% train–test split, one-hot encoding for preprocessing, and class balancing on the training data via random undersampling. Hyperparameter tuning is conducted using a staged coarse-to-fine search with local-optimum convergence criteria (improvement threshold ε = 10^(−6) and patience = 10), followed by 10-fold cross-validation for internal evaluation and final assessment on the test set. The primary evaluation metrics are F1-Score, Precision–Recall AUC (PR AUC), and Brier Score. On the test set, both methods achieve identical F1-Scores and nearly identical PR-AUC values. Random Forest and Elastic Net Logistic Regression both attain F1 = 0.996679, with PR-AUC = 0.999931 for Random Forest and 0.999927 for Elastic Net Logistic Regression. A more interpretable difference is observed in probability calibration, where Elastic Net Logistic Regression yields a lower Brier Score (0.002016) compared to Random Forest (0.002706). These results indicate that while both models lie on the same performance plateau in terms of discrimination and ranking, Elastic Net Logistic Regression provides better-calibrated probability estimates.
    URI
    https://repositori.usu.ac.id/handle/123456789/111753
    Collections
    • Undergraduate Theses [1496]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV