Show simple item record

dc.contributor.advisorRahmat, Romi Fadillah
dc.contributor.advisorSalmiah, Siti
dc.contributor.authorRamadhan, Filza Rizki
dc.date.accessioned2026-01-08T03:12:02Z
dc.date.available2026-01-08T03:12:02Z
dc.date.issued2026
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/111960
dc.description.abstractDental and oral diseases remain a prevalent health issue in Indonesia. The lack of routine dental check-ups and limited number of medical professionals highlight the need for an automated image-based identification system. This study implements two deep learning architectures, MobileNetV3 and EfficientNetV2, to classify seven types of dental and oral diseases based on clinical images. The dataset, consisting of 13,138 images sourced from Kaggle and the Dental and Oral Hospital of Universitas Sumatera Utara, was split into training, validation, and testing sets. The Models were trained using various hyperparameter combinations and evaluated with F1-score, precision, and recall. The best result was achieved by the MobileNetV3Large architecture with a test Accuracy of 0.949. This research demonstrates the effectiveness of the proposed method for disease classification and its potential for deployment in AI-based diagnostic systems.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectDental Disease Identificationen_US
dc.subjectMobileNetV3en_US
dc.subjectEfficientNetV2en_US
dc.subjectDeep Learningen_US
dc.subjectImage Classificationen_US
dc.titleIdentifikasi Penyakit Gigi dan Mulut Menggunakan Metode Mobilenetv3 dan Efficientnetv2en_US
dc.title.alternativeIdentification of Dental and Oral Diseases Using Mobilenetv3 and Efficientnetv2 Methodsen_US
dc.typeThesisen_US
dc.identifier.nimNIM211402146
dc.identifier.nidnNIDN0003038601
dc.identifier.nidnNIDN0026067901
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages95 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 3. Good Health And Well Beingen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record