Show simple item record

dc.contributor.advisorNasution, Tigor Hamonangan
dc.contributor.authorSimanungkalit, Ekron Nauli
dc.date.accessioned2026-01-26T03:02:04Z
dc.date.available2026-01-26T03:02:04Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/112276
dc.description.abstractAutonomous robots in the Indonesian SAR Robot Contest (KRSRI) require detailed scene understanding capabilities to navigate effectively in complex and dynamic arenas. Traditional feature-based or bounding box-based detection methods have limitations in providing spatial information regarding object shapes and boundaries. This research implements a semantic segmentation method using the U-Net architecture to perform pixel-wise classification of 11 object classes within the arena environment. The model was trained on a dataset of 355 original images, augmented to 1065 images, and subsequently deployed on a Raspberry Pi 5 in TensorFlow Lite format for real-time testing. The evaluation on the test set demonstrates the model's excellent performance, achieving a mean Intersection over Union (mIoU) of 0.8253 and a Dice Score of 0.9004. When implemented on the Raspberry Pi 5, the model runs at an average inference speed of 2.8 FPS or around 357 ms per frame using the CPU, proving viable for lightweight scene understanding needs. This research demonstrates that the U-Net architecture can be successfully applied to provide detailed and accurate visual perception for the KRSRI robot on an edge device.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectKRSRIen_US
dc.subjectSemantic Segmentationen_US
dc.subjectU-Neten_US
dc.subjectTensorFlow Liteen_US
dc.titleImplementasi Semantic Segmentation menggunakan Arsitektur U-Net pada Robot KRSRI untuk Memahami Lingkungan Arenaen_US
dc.title.alternativeImplementation of Semantic Segmentation Using U-Net Architecture on KRSRI Robot for Arena Scene Understandingen_US
dc.typeThesisen_US
dc.identifier.nimNIM210402120
dc.identifier.nidnNIDN0015048503
dc.identifier.kodeprodiKODEPRODI20201#Teknik Elektro
dc.description.pages99 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record