Show simple item record

dc.contributor.advisorRahmat, Romi Fadillah
dc.contributor.advisorLubis, Fahrurrozi
dc.contributor.authorFubrianto, Kenzie
dc.date.accessioned2026-01-26T09:18:14Z
dc.date.available2026-01-26T09:18:14Z
dc.date.issued2026
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/112281
dc.description.abstractRoad damage, especially potholes, poses significant risks to both road users and a country's infrastructure. Conventional detection methods are often ineffective in dealing with the visual patterns and environmental conditions present on roads. This research aims to develop a pothole detection system using deep learning, specifically YOLOv11 and Faster R-CNN. These two algorithms will be compared to determine which model is more effective in handling road surface patterns. The dataset was collected directly from several road sections in Medan City and classified into four categories: small-shallow, small-deep, large-shallow, and large-deep. The testing results show that YOLOv11 is more effective in detecting potholes with higher mAP 0,894, precision 0,92, recall 0,95, and F1-score 0,93. However, misclassifications still occurred, indicating the need for a more diverse dataset to improve the model's performance in detecting potholes on roads.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectpotholeen_US
dc.subjectdetectionen_US
dc.subjectdeep learningen_US
dc.subjectYOLOv11en_US
dc.subjectFaster R-CNNen_US
dc.titleSistem Deteksi dan Klasifikasi Pothole pada Jalanan Menggunakan Algoritma YOLOv11 dan Faster R-CNNen_US
dc.title.alternativeRoad Pothole Detection and Classification System Using YOLOv11 Algorithm and Faster R-CNNen_US
dc.typeThesisen_US
dc.identifier.nimNIM211402139
dc.identifier.nidnNIDN0003038601
dc.identifier.nidnNIDN0012108604
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages86 pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record