Show simple item record

dc.contributor.advisorBudiman, M. Andri
dc.contributor.advisorRachmawati, Dian
dc.contributor.authorIsmail, Anhar
dc.date.accessioned2018-04-19T07:33:04Z
dc.date.available2018-04-19T07:33:04Z
dc.date.issued2017
dc.identifier.urihttp://repositori.usu.ac.id/handle/123456789/2205
dc.description.abstractNowadays, the high interest of the society to the social media based on image, causing high requirement of good quality image to support information to be conveyed or distributed. But often that gets the public is the image with poor quality, such as the appearance of noise in the image. The image that contains noise, requires the repair (restoration) of the image. One way to restore the image is to reduce the noise in the image. There are several methods for reducing noise in the image. Some of them are Alpha-trimmed Mean Filter, Geometric Mean Filter, and combinations of both methods. The process of noise-reduction testing with filtering is done on squareshaped .bmp images with dimensions of 281 x 281 pixels and 400 x 400 pixels with noise probabilities in the range of 10% - 50% to generate MSE, PSNR and Running Time values. The generated noise are Gaussian Noise, Speckle Noise, and Uniform Noise. Based on the research, got result that Gaussian Noise is best reduced by Geometric Mean Filter method. Speckle Noise is best reduced by a combination method of Geometric Mean Filter with Alpha-trimmed Mean Filter. While Uniform Noise is best reduced by a combination method of Alpha-trimmed Mean Filter with Geometric Mean Filter. The fastest Running Time values in reducing the noises produced by Geometric Mean Filter.en_US
dc.description.abstractBesarnya kegandrungan masyarakat terhadap media sosial berbasis citra hari ini, menyebabkan tingginya kebutuhan akan citra yang berkualitas baik untuk menunjang informasi yang ingin disampaikan atau dibagikan. Namun seringkali yang didapatkan masyarakat adalah citra dengan kualitas yang tidak baik, misalnya munculnya noise pada citra. Citra yang mengandung noise, membutuhkan perbaikan (restorasi) citra. Salah satu cara perbaikan citra adalah dengan mereduksi noise yang ada pada citra. Terdapat beberapa metode untuk mereduksi noise pada citra. Beberapa diantaranya adalah Alpha-trimmed Mean Filter, Geometric Mean Filter, dan kombinasi dari kedua metode tersebut. Proses pengujian reduksi noise dengan filtering dilakukan pada citra berformat .bmp berbentuk persegi berdimensi 281 x 281 piksel dan 400 x 400 piksel dengan probabilitas noise dalam range 10% – 50% untuk menghasilkan nilai MSE, PSNR dan Running Time. Noise yang dibangkitkan adalah Gaussian Noise, Speckle Noise, dan Uniform Noise. Berdasarkan penelitian yang dilakukan, diperoleh bahwa Gaussian Noise direduksi paling baik dengan metode Geometric Mean Filter. Speckle Noise direduksi paling baik dengan kombinasi metode Geometric Mean Filter dengan Alpha-trimmed Mean Filter. Sedangkan Uniform Noise direduksi paling baik dengan kombinasi metode Alpha-trimmed Mean Filter dengan Geometric Mean Filter. Nilai Running Time tercepat dalam mereduksi ketiga noise dihasilkan oleh Geometric Mean Filter.en_US
dc.language.isoiden_US
dc.subjectNoise Reductionen_US
dc.subjectAlpha-trimmed Mean Filteren_US
dc.subjectGeometric Mean Filteren_US
dc.subjectGaussian Noiseen_US
dc.subjectSpackle Noiseen_US
dc.subjectUniform Noiseen_US
dc.titleAnalisis Perbandingan Kombinasi Metode Alpha-Trimmed Mean Filter dan Geometric Mean Filter untuk Mereduksi Noise pada Citra Digitalen_US
dc.typeThesisen_US
dc.identifier.nimNIM111401084en_US
dc.identifier.submitterNurhusnah Siregar
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record