Struktur dan Sifat Elektrokimia Material Katoda LiFePO4/C yang Disintesis dengan Metode Surfactant-Assisted Solid State Reaction
View/ Open
Date
2020Author
Sihombing, Santi Novika
Advisor(s)
Sembiring, Manis
Rifai, Abdulloh
Metadata
Show full item recordAbstract
Penelitian tentang sintesis material katoda LiFePO4/C telah berhasil dilakukan dengan metode Surfactant-Assisted solid state Reaction. Sintesis LiFePO4 dilakukan dengan variasi suhu kalsinasi 600
, 700
, 800
dan LiFePO4/C doping Mangan (x= 0,1 dan x = 0,2). Hasil analisa XRD menunjukkan untuk suhu kalsinasi 600
merupakan suhu optimal sintesis LiFePO4. Pengaruh surfaktan untuk sintesis LiFePO4 hasil XRD menunjukkan LiFePO4 tanpa surfaktan dihasilkan fasa LiFePO4 sebanyak 67.4%, Fe2P sebanyak 18.2% dan Li3PO4 sebanyak 14.3%. Analisa SEM menunjukkan bahwa sampel menggunakan surfaktan menghasilkan partikel yang lebih kecil namun keseragaman partikel tidak terlalu baik dan sampel yang menggunakan doping menghasilkan ukuran butir yang besar. Hasil CV menunjukkan LiFePO4 menghasilkan puncak okidasi dan reduksi tertinggi pada suhu kalsinasi 600
. LiFePO4 doping Mn mengalami kenaikan pada midpoint untuk masing-masing Mn x =0,1 dan x =0,2 yaitu 3,457V dan 3,460V. Sedangkan untuk CD, kapasitas sel baterai terbaik diperoleh pada suhu kalsinasi 600
sebesar 127,21 mAh/g. Research on the synthesis of the LiFePO4 / C cathode material has been successfully carried out using the Surfactant-Assisted solid state reaction method. The synthesis of LiFePO4 was carried out by varying the calcination temperature of 600, 700, 800 and LiFePO4/C doping Manganese (x = 0.1 and x = 0.2). The results of XRD analysis showed that the calcination temperature of 600 was the optimal temperature for the synthesis of LiFePO4. The effect of surfactants for the synthesis of LiFePO4 from XRD results showed that LiFePO4 without surfactant resulted in 67.4% of LiFePO4, 18.2% of Fe2P and 14.3% of Li3PO4. SEM analysis shows that samples using surfactants produce smaller particles but the particle uniformity is not very good and samples using doping produce large grain sizes. CV results showed that LiFePO4 produced the highest oxidation and reduction peaks at a calcination temperature of 600. LiFePO4 doping Mn increased at the midpoint for Mn x = 0.1 and x = 0.2, namely 3.457V and 3.460V. As for CD, the best battery cell capacity was obtained at a calcination temperature of 600 at 127.21 mAh/g.
Collections
- Undergraduate Theses [1320]