| dc.contributor.advisor | Munir, Achwil Putra | |
| dc.contributor.author | Ritonga, Melva Lianur | |
| dc.date.accessioned | 2021-11-10T06:45:31Z | |
| dc.date.available | 2021-11-10T06:45:31Z | |
| dc.date.issued | 2021 | |
| dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/45512 | |
| dc.description.abstract | Measurement of the chemical content of coffee beans is generally done destructively where it is known to be less effective. Measurement using the Near Infrared Spectroscopy (NIRS) method is an alternative that can be used to determine the chemical content of coffee non-destructively in a short time. The study aimed to obtain a PLS calibration model of water, lipid and carbohydrate content in Sidikalang Arabica green bean coffee. Partial Least Square (PLS) method can predicted the measurement results of NIRS using several pretreatments, namely multiple scatter correction (MSC), standard normal variative (SNV), normalization, first derivative, second derivative, first derivative + MSC and second derivative + MSC. Results showed that the calibration model for water content was using normalization at 6 PLS factor with r value of 0.574 and residual predictive deviation (RPD) value was 1.23. Lipid calibration model was using MSC at 5 PLS factor with r value 0.647 and RPD value was 1.32 and carbohydrate calibration model was using MSC on 6 PLS factors with r value of 0.563 and RPD value was 1.22. | en_US |
| dc.description.abstract | Pengukuran kandungan kimia biji kopi umumnya dilakukan secara destruktif dimana diketahui kurang efektif. Pengukuran dengan metode Near Infrared Spectroscopy (NIRS) merupakan alternatif yang dapat digunakan untuk menentukan kandungan kimia kopi secara nondestruktif dengan waktu yang cukup singkat. Penelitian ini bertujuan untuk mendapatkan model kalibrasi PLS kandungan air, lemak dan karbohidrat pada kopi green bean Arabika Sidikalang. Metode Partial Least Square (PLS) dapat memprediksi hasil pengukuran dari NIRS dengan menggunakan beberapa pretreatment, yaitu multiple scatter correction (MSC), standart normal variative (SNV), normalisasi, derivative 1, derivative 2, derivative 1 + MSC dan derivative 2 + MSC. Hasil penelitian ini menunjukkan bahwa model kalibrasi PLS pada kandungan air adalah menggunakan normalisasi pada 6 faktor PLS dengan nilai r sebesar 0,574 dan nilai residual predictive deviation (RPD) sebesar 1,23. Model kalibrasi lemak menggunakan MSC pada 5 faktor PLS dengan nilai r sebesar 0,647 dan nilai RPD sebesar 1,32 dan model kalibrasi karbohidrat menggunakan MSC pada 6 faktor PLS dengan nilai r sebesar 0,563 dan nilai RPD sebesar 1,22. | en_US |
| dc.language.iso | id | en_US |
| dc.publisher | Universitas Sumatera Utara | en_US |
| dc.subject | Sidikalang Coffee | en_US |
| dc.subject | pretreatment method | en_US |
| dc.subject | NIRS | en_US |
| dc.subject | PLS | en_US |
| dc.subject | Kopi Sidikalang | en_US |
| dc.subject | Metode Pretreatment | en_US |
| dc.title | Kalibrasi Kandungan Proksimat Kopi Green Bean Arabika Sidikalang Menggunakan Nir Spectroscopy dan Partial Least Square (PLS) | en_US |
| dc.type | Thesis | en_US |
| dc.identifier.nim | NIM160308012 | |
| dc.description.pages | 74 Halaman | en_US |
| dc.description.type | Skripsi Sarjana | en_US |