• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifikasi Batu Ginjal Menggunakan Extreme Learning Machine

    View/Open
    Fulltext (3.468Mb)
    Date
    2021
    Author
    Silaen, Lisa Felicia
    Advisor(s)
    Rahmat, Romi Fadillah
    Sitompul, Opim Salim
    Metadata
    Show full item record
    Abstract
    Kidney is one of the organs of excretion in human’s body and kidney stone is one of the disease that commonly occurs in kidney. Kidney stones occur when minerals or other substances in the blood crystallize in the kidneys and become solid. In order to identify kidney stones, doctors and radiologists look at the USG images of the kidneys with bare eyes and there still possibility for wrong prediction. Hence, a computational method is needed to identify the kidney stones that suffered by patients through kidney USG images. The motive of this study is to identify kidney stones through USG images using Extreme Learning Machine method. The steps carried out in this research are Preprocessing, Segmentation, Feature Extraction and Identification. In preprocessing there is Scaling and Contrast Enhancement using CLAHE, in Segmentation using Thresholding Otsu and Morphological Close segmentation methods, in for feature extraction the method used is Gray Level Co-occurrence Matrix (GLCM) and identification with Extreme Machine Learning. This study obtained an accuracy of 80.76%.
     
    Ginjal merupakan salah satu organ ekskresi pada manusia. Salah satu penyakit yang menyerang ginjal ialah batu ginjal. Batu ginjal terjadi ketika adanya mineral atau zat lain dalam darah yang mengkristal di ginjal dan membentuk suatu padatan. Dalam identifikasi batu ginjal dokter maupun ahli radiologi melihat citra USG ginjal secara manual, tentu para dokter sudah ahli dalam mendeteksi namun masih ada kemungkinan terjadi kesalahan dalam memprediksi gambar. Untuk itu diperlukan suatu metode komputasi untuk mempermudah identifikasi batu ginjal yang diderita oleh pasien melalui citra USG ginjal. Tujuan penelitian ini adalah untuk pengidentifikasian batu ginjal melalui citra USG memakai metode Extreme Learning Machine. Langkah-langkah dalam melakukan penelitian ini yaitu Preprocessing, Segmentasi, Fitur Ekstraksi serta Identifikasi. Pada preprocessing terdapat Scaling dan peningkatan kontras menggunakan CLAHE, pada Segmentasi menggunakan metode segmentasi Thresholding otsu dan Morphological Close, pada fitur ekstraksi metode yang dipakai yakni Gray Level Co-occurrence Matrix (GLCM) serta identifikasi dengan Extreme Machine Learning. Penelitian ini mendapatkan hasil akurasi sebesar 80.76%.

    URI
    https://repositori.usu.ac.id/handle/123456789/47403
    Collections
    • Undergraduate Theses [876]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV