Sintesis dan Karakterisasi Sodium Mangan Oksida (Na2Mn3O7) sebagai Katoda Baterai Ion Sodium dengan Bahan Pengisi Graphitic Carbon Nanostructures dari Limbah Kulit Durian
View/ Open
Date
2021Author
Marlina, Hilda Ayu
Advisor(s)
Sebayang, Kerista
Sunendar, Bambang
Gea, Saharman
Metadata
Show full item recordAbstract
Na2Mn3O7, which is in triclinic structure, is known to have a high energy capacity value that can be applied as a battery cathode. In addition, graphitic carbon nanostructures (GCN) obtained from durian skin waste was improved the conductivity of Na2Mn3O7. This research aimed to synthesize and characterize sodium manganese oxide (Na2Mn3O7) as a sodium ion battery cathode (SIB) with the filler of graphitic carbon nanostructures (GCN) obtained from durian skin waste. The synthesis of Na2Mn3O7 was carried out by 5 different methods, namely the hydrothermal method followed by solid mixing, the solid method, the sol-gel method, the solid template method, and the sol-gel template method. However, the synthesis of Na2Mn3O7 in this study was focused on the solid template method and the so-gel template method because it was effective and efficient. Both of these methods used two different chelating agents for comparison (sugar and ethylene glycol). The sample of Na2Mn3O7 was characterized by using several measurements, in particular, FTIR, TG-DTA/DSC, XRD, SEM, TEM, and BET, while GCN was only characterized by TEM and XRD. The addition of GCN to Na2Mn3O7 was conducted during assembly process. After assembling the battery cathode, the Galvanostatic Charge/Discharge (GCD) test was applied to determine the battery performance. From 8 types of sample, the sample produced by employing the sol-gel template with ethylene glycol as chelating agent was found to have the higest intensity value of Na2Mn3O7 (1255 cts) with a fairly low crystallinity temperature of Na2Mn3O7 (645-800℃) and a high specific surface area (178,915 m2/g). In addition, the addition of GCN to Na2Mn3O7 was produced by the sol-gel template with ethylene glycol as chelating agent shown the increase of the charge/discharge cycles of 2 cycles. Na2Mn3O7 dengan struktur triklinik diketahui memiliki nilai kapasitas energi yang tinggi sehingga dapat diaplikasikan sebagai katoda baterai. Selain itu, graphitic carbon nanostructures (GCN) yang diperoleh dari limbah kulit durian dapat meningkatkan konduktivitas Na2Mn3O7. Penelitian ini bertujuan untuk mensintesis dan mengkarakterisasi sodium mangan oksida (Na2Mn3O7) sebagai katoda baterai ion sodium (SIB) dengan pengisi GCN yang diperoleh dari limbah kulit durian. Sintesis Na2Mn3O7 dilakukan dengan 5 metode yang berbeda, yaitu metode hidrotermal diikuti pencampuran padatan, metode padatan, metode sol-gel, metode template padatan, dan metode template sol-gel. Namun, sintesis Na2Mn3O7 pada penelitian ini difokuskan pada metode template padatan dan metode template so-gel karena efektif dan efisien. Kedua metode ini menggunakan dua chelating agent yang berbeda, yaitu gula pasir dan etilen glikol. Sampel Na2Mn3O7 dikarakterisasi menggunakan FTIR, TG-DTA/DSC, XRD, SEM, TEM, dan BET. Sedangkan GCN hanya dikarakterisasi menggunakan TEM dan XRD. Penambahan GCN ke dalam Na2Mn3O7 dilakukan selama proses perakitan baterai. Setelah perakitan baterai, uji Galvanostatic Charge/Discharge (GCD) diterapkan untuk menentukan performansi baterai. Dari 8 jenis sampel, sampel yang dihasilkan melalui metode template sol-gel dengan etilen glikol sebagai chelating agent memiliki nilai intensitas fasa tertinggi (1255 cts) dengan temperatur kristalinitas Na2Mn3O7 yang cukup rendah (645-800℃) dan luas permukaan spesifik yang cukup tinggi (178,915 m2/g). Disamping itu, penambahan GCN pada Na2Mn3O7 yang disintesis melalui metode template sol-gel dengan chelating agent etilen glikol menunjukkan peningkatan siklus baterai sebanyak 2 siklus.