dc.contributor.advisor | Mawengkang, Herman | |
dc.contributor.advisor | Efendi, Syahril | |
dc.contributor.author | Ginting, Dewi Sartika | |
dc.date.accessioned | 2018-08-01T02:42:38Z | |
dc.date.available | 2018-08-01T02:42:38Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://repositori.usu.ac.id/handle/123456789/4942 | |
dc.description.abstract | Apriori Algorithm one of the data mining algorithms in the formation of
association rule mining. A priori algorithm is the process of extraction of
information from a database, followed by frequent item / itemset and candidate
generation in formation of association rule mining in order to obtain minimum
value of support and minimum confidence value. The value of confidence has a
big effect on the resulting rule, where the rule generated by the k-itemsets pattern
needs to be calculated on the level of confidence or certainty of the k-itemsets
pattern that has complied with the rules. Therefore, this research discusses about a
priori algorithm modification which focuses on giving confidence value for each
rule generated. Modifications are made by substituting the Bayesian method on a
standard Apriori confidence formula. But at the beginning of the pre-processing
data is done item reduction, due to the number of items that are very small value
of occurrence in sales transactions. In the process of item reduction, the author
uses Principal Component Analysis method. From the result of research done for
pre-processing, there is item reduction equal to 77,7% and for next process there
is difference of confidence value between standard apriori and modification,
where the value of confidence generated a priori modification is bigger, and after
calculated for some rules taken according to the minimum requirement of support,
there is an average difference of confidence value of 6.81%. | en_US |
dc.description.abstract | Algoritma Apriori salah satu algoritma data mining dalam pembentukan asosiasi
rule mining. Algoritma apriori adalah proses ekstraksi informasi dari suatu
database, dilanjutkan dengan melakukan frequent item/itemset dan candidate
generation dalam pembentukan asosiasi rule mining guna mendapatkan hasil nilai
minimum support dan nilai minimum confidence. Nilai confidence berpengaruh
besar terhadap rule-rule yang dihasilkan, dimana rule yang dihasilkan oleh pola kitemsets
perlu di hitung nilai tingkat kepercayaan atau kepastian dari pola kitemsets
yang sudah memenuhi aturan. Untuk itu penelitian ini membahas tentang
modifikasi algoritma apriori yang terfokus pada pemberian nilai confidence untuk
setiap rule yang dihasilkan. Modifikasi yang dilakukan dengan mensubtitusi
metode bayesian pada formula confidence di apriori standart. Namun di awal pada
pre-processing data dilakukan reduksi item, dikarenakan banyaknya item-item
yang sangat kecil nilai kemunculan dalam transaksi penjualan. Pada proses
reduksi item, penulis menggunakan metode Principal Componen Analysis. Dari
hasil penelitian yang dilakukan untuk pre-processing maka terjadi reduksi item
sebesar 77,7% dan untuk proses selanjutnya terdapat perbedaan nilai confidence
antara apriori standar dan modifikasi, dimana nilai confidence yang dihasilkan
apriori modifikasi lebih besar, dan setelah dihitung untuk beberapa aturan yang
diambil sesuai ketentuan minimum support maka terdapat rata-rata perbedaan
nilai confidence sebesar 6,81%. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Apriori Algorithm | en_US |
dc.subject | Modification | en_US |
dc.subject | Rule Mining Association | en_US |
dc.subject | Bayesian Opportunity | en_US |
dc.subject | Principal Component Analysis | en_US |
dc.title | “Modifikasi Algoritma Apriori dengan Substitusi Metode Bayesian pada Nilai Confidence Terhadap Aturan Asosiasi | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM167038009 | en_US |
dc.identifier.submitter | Nurhusnah Siregar | |
dc.description.type | Tesis Magister | en_US |