Show simple item record

dc.contributor.advisorSuwilo, Saib
dc.contributor.advisorSutarman
dc.contributor.advisorMawengkang, Herman
dc.contributor.authorCipta, Hendra
dc.date.accessioned2022-11-25T09:00:51Z
dc.date.available2022-11-25T09:00:51Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/65530
dc.description.abstractRobust optimization assumes that uncertain data has a convex set and a finite set called uncertainty. The discussion begins by determin- ing the robust counterpart which is achieved by assuming the uncertain data set is in the uncertainty set in the box-interval. In this study, the robust counterpart is expressed in form of the box-interval uncertainty set. Then the robust counterpart formulation is presented as a mas- ter problem and sub problem. Robust Benders decomposition method is used to solve robust optimization problems where the objective function is convex and the problem constraints are quasiconvex. This method is applied to find the optimal robust solution in the feasible region for all data parameters. Numerical simulation of this problem is given manually and the process is continued using POM-QM software.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectRobust optimizationen_US
dc.subjectBox-interval uncertaintyen_US
dc.subjectRobust benders decomposition methoden_US
dc.titlePengembangan Metode Dekomposisi Benders untuk Optimisasi Robusten_US
dc.typeThesisen_US
dc.identifier.nimNIM188110001
dc.identifier.nidnNIDN0009016402
dc.identifier.nidnNIDN0026106305
dc.identifier.nidnNIDN8859540017
dc.identifier.kodeprodiKODEPRODI44002#Ilmu Matematika
dc.description.pages134 Halamanen_US
dc.description.typeDisertasi Doktoren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record