dc.contributor.advisor | Suwilo, Saib | |
dc.contributor.advisor | Mardiningsih | |
dc.contributor.author | Syahputra, Indra | |
dc.date.accessioned | 2022-12-17T04:16:16Z | |
dc.date.available | 2022-12-17T04:16:16Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/74744 | |
dc.description.abstract | Let D be a asymmetric two-colored digraph on n = 2m, m 4 vertices which have a common vertex and the length of each cycles is m and m + 1. Since D is asymmetric, there exists two cycles of length m are denoted by γ1 and γ2 and two cycles of length m + 1 are denoted by γ3 and γ4 and also has cycles of length 2. If γ1 dan γ3 have each exactly one blue arc, This research will show that usedly a 2 by 2 submatrix with determinant 1 of cycle matrix in D then obtained exp2(D) ≤ 1 (2n2 − n − 6). On emprical data show that the 2-exponents of D can be achieved
using (h, k)-walks with h = k. Using this fact we show that exp2(D) ≤ (n +2n). | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.title | 2-Eksponen Digraph Dwiwarna Asimetrik dengan Dua Cycle yang Bersinggungan | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM040803003 | |
dc.identifier.nidn | NIDN0009016402 | |
dc.identifier.nidn | NIDN0005046302 | |
dc.identifier.kodeprodi | KODEPRODI44201#Matematika | |
dc.description.pages | 45 Halaman | en_US |
dc.description.type | Skripsi Sarjana | en_US |