Show simple item record

dc.contributor.advisorSuwilo, Saib
dc.contributor.advisorMardiningsih
dc.contributor.authorSyahputra, Indra
dc.date.accessioned2022-12-17T04:16:16Z
dc.date.available2022-12-17T04:16:16Z
dc.date.issued2009
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/74744
dc.description.abstractLet D be a asymmetric two-colored digraph on n = 2m, m 4 vertices which have a common vertex and the length of each cycles is m and m + 1. Since D is asymmetric, there exists two cycles of length m are denoted by γ1 and γ2 and two cycles of length m + 1 are denoted by γ3 and γ4 and also has cycles of length 2. If γ1 dan γ3 have each exactly one blue arc, This research will show that usedly a 2 by 2 submatrix with determinant 1 of cycle matrix in D then obtained exp2(D) ≤ 1 (2n2 − n − 6). On emprical data show that the 2-exponents of D can be achieved using (h, k)-walks with h = k. Using this fact we show that exp2(D) ≤ (n +2n).en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.title2-Eksponen Digraph Dwiwarna Asimetrik dengan Dua Cycle yang Bersinggunganen_US
dc.typeThesisen_US
dc.identifier.nimNIM040803003
dc.identifier.nidnNIDN0009016402
dc.identifier.nidnNIDN0005046302
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages45 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record